Characterisation of Exponential Convergence to Nonequilibrium Limits for Stochastic Volterra Equations

نویسندگان

  • John A. D. Appleby
  • Siobhán Devin
  • David W. Reynolds
چکیده

X 0 X0, 1.1b to a nontrivial random variable. Here the solution X is an n-dimensional vector-valued function on 0,∞ , A is a real n × n-dimensional matrix, K is a continuous and integrable n × n-dimensional matrix-valued function on 0,∞ , f is a continuous n-dimensional vectorvalued function on 0,∞ , Σ is a continuous n × d-dimensional matrix-valued function on 0,∞ and B t B1 t , B2 t , . . . , Bd t , where each component of the Brownian motion is independent. The initial condition X0 is a deterministic constant vector. The solution of 1.1a 1.1b can be written in terms of the solution of the resolvent equation

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of Numerical Method For the Solution of Nonlinear Delay Volterra Integral ‎Equations‎

‎‎In this paper, Solvability nonlinear Volterra integral equations with general vanishing delays is stated. So far sinc methods for approximating the solutions of Volterra integral equations have received considerable attention mainly due to their high accuracy. These approximations converge rapidly to the exact solutions as number sinc points increases. Here the numerical solution of nonlinear...

متن کامل

Convergence of the sinc method applied to delay Volterra integral equations

‎In this paper‎, ‎the numerical solutions of linear and nonlinear Volterra integral‎ ‎equations with nonvanishing delay are considered by two methods‎. ‎The methods are developed by means of‎ ‎the sinc approximation with the single exponential (SE) and double exponential (DE)‎ ‎transformations‎. ‎The existence and uniqueness of sinc-collocation solutions for these equations are provided‎. ‎Thes...

متن کامل

A computational wavelet method for numerical solution of stochastic Volterra-Fredholm integral equations

A Legendre wavelet method is presented for numerical solutions of stochastic Volterra-Fredholm integral equations. The main characteristic of the proposed method is that it reduces stochastic Volterra-Fredholm integral equations into a linear system of equations. Convergence and error analysis of the Legendre wavelets basis are investigated. The efficiency and accuracy of the proposed method wa...

متن کامل

Convergence of Legendre wavelet collocation method for solving nonlinear Stratonovich Volterra integral equations

In this paper, we apply Legendre wavelet collocation method to obtain the approximate solution of nonlinear Stratonovich Volterra integral equations. The main advantage of this method is that Legendre wavelet has orthogonality property and therefore coefficients of expansion are easily calculated. By using this method, the solution of nonlinear Stratonovich Volterra integral equation reduces to...

متن کامل

Wilson wavelets for solving nonlinear stochastic integral equations

A new computational method based on Wilson wavelets is proposed for solving a class of nonlinear stochastic It^{o}-Volterra integral equations. To do this a new stochastic operational matrix of It^{o} integration for Wilson wavelets is obtained. Block pulse functions (BPFs) and collocation method are used to generate a process to forming this matrix. Using these basis functions and their operat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008